本人急需:高频信号发生器的使用方法!

2024-05-10 00:39

1. 本人急需:高频信号发生器的使用方法!

认识信号发生器(高清+背景音乐)

本人急需:高频信号发生器的使用方法!

2. 多功能信号发生器与高频低频信号发生器有什么不同

http://wenku.baidu.com/view/c470fd0302020740be1e9b50.html
正弦信号发生器:正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。  用555制作的多波形信号发生器
低频信号发生器:包括音频(200~20000赫)和视频 (1赫~10兆赫)范围的正弦波发生器。主振级一般用RC式振荡器,也可用差频振荡器。为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。   高频信号发生器:频率为 100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器。一般采用 LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出。主要用途是测量各种接收机的技术指标。输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下。(图1)的输出信号电平能准确读数,所加的调幅度或频偏也能用电表读出。此外,仪器还有防止信号泄漏的良好屏蔽。   标准信号发生器   微波信号发生器:从分米波直到毫米波波段的信号发生器。信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有逐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势。仪器一般靠机械调谐腔体来改变频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上。简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调节到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必须有内部或外加矩形脉冲调幅,以便测试雷达等接收机。   扫频和程控信号发生器:扫频信号发生器能够产生幅度恒定、频率在限定范围内作线性变化的信号。在高频和甚高频段用低频扫描电压或电流控制振荡回路元件(如变容管或磁芯线圈)来实现扫频振荡;在微波段早期采用电压调谐扫频,用改变返波管螺旋线电极的直流电压来改变振荡频率,后来广泛采用磁调谐扫频,以YIG铁氧体小球作微波固体振荡器的调谐回路,用扫描电流控制直流磁场改变小球的谐振频率。扫频信号发生器有自动扫频、手控、程控和远控等工作方式。     标准信号发生器
频率合成式信号发生器:这种发生器的信号不是由振荡器直接产生,而是以高稳定度石英振荡器作为标准频率源,利用频率合成技术形成所需之任意频率的信号,具有与标准频率源相同的频率准确度和稳定度。输出信号频率通常可按十进位数字选择,最高能达11位数字的极高分辨力。频率除用手动选择外还可程控和远控,也可进行步级式扫频,适用于自动测试系统。直接式频率合成器由晶体振荡、加法、乘法、滤波和放大等电路组成,变换频率迅速但电路复杂,最高输出频率只能达1000兆赫左右。用得较多的间接式频率合成器是利用标准频率源通过锁相环控制电调谐振荡器(在环路中同时能实现倍频、分频和混频),使之产生并输出各种所需频率的信号。这种合成器的最高频率可达26.5吉赫。高稳定度和高分辨力的频率合成器,配上多种调制功能(调幅、调频和调相),加上放大、稳幅和衰减等电路,便构成一种新型的高性能、可程控的合成式信号发生器,还可作为锁相式扫频发生器。   函数发生器:又称波形发生器。它能产生某些特定的周期性时间函数波形(主要是正弦波、方波、三角波、锯齿波和脉冲波等)信号。频率范围可从几毫赫甚至几微赫的超低频直到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。图2为产生上述波形的方法之一,将积分电路与某种带有回滞特性的阈值开关电路(如施米特触发器)相连成环路,积分器能将方波积分成三角波。施米特电路又能使三角波上升到某一阈值或下降到另一阈值时发生跃变而形成方波,频率除能随积分器中的RC值的变化而改变外,还能用外加电压控制两个阈值而改变。将三角波另行加到由很多不同偏置二极管组成的整形网络,形成许多不同斜度的折线段,便可形成正弦波。另一种构成方式是用频率合成器产生正弦波,再对它多次放大、削波而形成方波,再将方波积分成三角波和正、负斜率的锯齿波等。对这些函数发生器的频率都可电控、程控、锁定和扫频,仪器除工作于连续波状态外,还能按键控、门控或触发等方式工作。   脉冲信号发生器:产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。脉冲发生器主要由主控振荡器、延时级、脉冲形成级、输出级和衰减器等组成。主控振荡器通常为多谐振荡器之类的电路,除能自激振荡外,主要按触发方式工作。通常在外加触发信号之后首先输出一个前置触发脉冲,以便提前触发示波器等观测仪器,然后再经过一段可调节的延迟时间才输出主信号脉冲,其宽度可以调节。有的能输出成对的主脉冲,有的能分两路分别输出不同延迟的主脉冲。   随机信号发生器:随机信号发生器分为噪声信号发生器和伪随机信号发生器两类。   噪声信号发生器: 完全随机性信号是在工作频带内具有均匀频谱的白噪声。常用的白噪声发生器主要有:工作于1000兆赫以下同轴线系统的饱和二极管式白噪声发生器;用于微波波导系统的气体放电管式白噪声发生器;利用晶体二极管反向电流中噪声的固态噪声源(可工作在18吉赫以下整个频段内)等。噪声发生器输出的强度必须已知,通常用其输出噪声功率超过电阻热噪声的分贝数(称为超噪比)或用其噪声温度来表示。噪声信号发生器主要用途是:①在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统的性能;②外加一个已知噪声信号与系统内部噪声相比较以测定噪声系数;③用随机信号代替正弦或脉冲信号,以测试系统的动态特性。例如,用白噪声作为输入信号而测出网络的输出信号与输入信号的互相关函数,便可得到这一网络的冲激响应函数。   伪随机信号发生器:用白噪声信号进行相关函数测量时,若平均测量时间不够长,则会出现统计性误差,这可用伪随机信号来解决。当二进制编码信号的脉冲宽度墹T足够小,且一个码周期所含墹T数N很大时,则在低于fb=1/墹T的频带内信号频谱的幅度均匀,称为伪随机信号。只要所取的测量时间等于这种编码信号周期的整数倍,便不会引入统计性误差。二进码信号还能提供相关测量中所需的时间延迟。伪随机编码信号发生器由带有反馈环路的n级移位寄存器组成,所产生的码长为 N=2-1 。
编辑本段应用
  信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

3. 多频率信号发生器是什么

就是一个信号发生器 能发出不同种类的信号 同时这些信号的频率可控 数字系统实现多频率信号发生器一般采用DDS技术

多频率信号发生器是什么

4. 高频发生器的介绍

高频发生器(radioffequency generator)又称射频发生器。电感耦合等离子体原子发射光谱/质谱等分析中用来产生等离子体炬的装置。它产生的高频电流输给电感线圈,以激励石英炬管(置于线圈中)内的氩气,形成等离子体焰炬。分自激式和他激式(晶控型)振荡器两种类型。振荡频率在3~50兆赫,常为27.12兆赫和40.68兆赫,输出功率在0.7~7千瓦,常用为1.0~2.0千瓦。自激式振荡器线路简单,振荡、激励、功率放大都由一个电子管同时完成,易与负载阻抗相匹配,易于点燃等离子体,但频率稳定度稍差。他激式振荡器由晶体振荡、倍频、激励、功率放大等部分组成,频率稳定性高,但对输出阻抗的匹配要求较严,一般还配备阻抗匹配网络和稳定输出功率的定向耦合器等。一般要求高频发生器具有稳定的功率输出,对测量系统无电学干扰、功率转换效率高以及频率尽可能稳定等。

5. 高频发生器的作用

在输入一定范围的电源电压后,高频发生器产生2.65MHZ高频恒电压送给功率耦合器,由功率耦合器在玻壳的放电空间内建立静电强磁场,对放电空间内的大气进行电离,并生产强紫外光,玻璃泡壳内壁的三基色荧光粉受强紫外光激励发光。在电源设计上,由于采用APFC电源控制技术和采用IC技术,一方面使得电源的功率因数高达0.95以上;另一方面使得高频发生器始终以高频恒电压点灯。所以,输入的电源电压在一定范围内波动时,其发光亮度均不变。

高频发生器的作用

6. 信号发生器的原理是什么?怎么控制信号频率?

信号发生器的电路设计有很多种,例如最简单的晶体管或IC振荡器,复杂一些的VCO电路,以及嵌入式系统加D/A电路构成的智能波形发生器等,所以没法一概而论。如果说它们的共性,那就是它们都是输出各种波形信号的设备。
 
至于信号频率,这只是信号发生器的输出参数之一。信号发生器要控制输出波形的形状、幅度、频率等很多指标参数。在不同的电路设计中,控制频率的方式也不同。例如简单的振荡器中,控制频率有R-C参数方式、L-C参数方式、石英晶体或陶瓷片基频方式等等。VCO电路用电压控制压控振荡器的频率,并且通过反馈来稳频。至于智能波形发生器,它的频率实际上是软件设置出来的,操作者可以通过改变用户界面中和频率有关的参数来随意设置频率,以及其他参数。

7. 高压信号发生器原理

高压信号发生器原理?.高压发生器原理--简介
  高压发生器,英文名称为high voltage power supply, 简称HVPS,又称ZGF直流高压发生器,是高压电源的传统称呼,是指主要用于绝缘和漏电检测中的高压电源,现在高压电源和高压发生器已经没有严格的区别。根据电磁兼容性理论,采用特殊屏蔽、隔离和接地等措施,使直流高压发生器实现了高品质、便携式,并能承受额定电压放电而不损坏。



2.高压发生器原理--作用
  高压发生器具有输出功率大、体积小、重量轻的特点,有可靠的过压、过流及零位合闸保护功能,它的作用主要可以总结为以下几种:

  1、把变压器输入的交流电压升高数百倍,再经整流,为X线管提供产生X线所需的直流高压。

  2、把X线管灯丝初级电路输入的交流电压降低,为X线管提供加热电压。

  3、如配有两只以上X线管,还要完成管电压和灯丝加热电压的切换。

高压信号发生器原理

8. 信号发生器产生频率的方法

信号发生器直接频率制备

利用振荡器直接输入建议的频率信号,晶体振荡器以其Q值低而获得广泛应用,使用恒温晶振和稳补晶振可进一步提升其频率稳定度。主要应用于单点频率信号制备。

2. 信号发生器间接频率制备

利用PLL锁相环展开频率制备,其特点是可输入宽频率范围信号,频率变化STM很小,频率LBP速度较慢。但存有频率变化STM和相噪指标相矛盾的缺点。PLL间接频率制备是频率制备的主要方式。

3.信号发生器直接数字制备(DDS)

利用数字技术展开信号波形制备,其特点是输入频率STM指标极高,频率LBP速度迅速,但输入频率范围较阔。


图7 信号源频率制备技术以及优缺点

直接频率制备技术原理框图如下图右图。使用温补晶振和恒温晶振能提升晶体振荡器的频率稳定度。


图8 直接频率制备原理框图

间接频率制备技术原理框图如下图右图。锁相环由鉴相器;环路滤波器;压控振荡器(VCO);分频器等共同组成。

从频率关系上分析,PLL相等于一种倍频器:PLL输入信号频率变化STM为其鉴相器工作频率。

假如建议频率变化STM越小,鉴相频率适当变大,而要确保输入频率值则N值适当变大。很小的鉴相频率会使PLL环路频宽适当增大,进而使PLL动态性能(频率LBP速度)转好。