低频信号发生器的适用范围?

2024-05-09 15:55

1. 低频信号发生器的适用范围?

低频信号发生器采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用。
以单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波及其他任意波形。波形的频率和幅度在一定范围内可任意改变。介绍了波形的生成原理、硬件电路和软件部分的设计原理。介绍了单片机控制D/A转换器产生上述信号的硬件电路和软件编程、DAC0832 D/A转换器的原理和使用方法、AT89C52以及与设计电路有关的各种芯片、关于产生不同低频信号的信号源的设计方案。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点
◆ 读数直观,精确,性能稳定,操作方便
◆ 低频信号发生采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用
◆ 频率输出范围 0Hz ~ 100Hz 正弦波
◆波形失真度 0.5%
◆电压输出范围 0 ~ 50V
◆额定输出功率 50VA
◆电压测量准确度 ±0.5% 满量程
◆频率测量准确度 ±0.05%
◆电源 220V±10%
◆工作环境 环境温度:0°~40°
◆相对湿度:≤80%

低频信号发生器的适用范围?

2. 对比低频信号发生器,高频信号发生器的性能要求有什么不同?

1.输出信号的频率范围不同;前者为几十或几百千赫以下,后者为100千赫以上甚至上千兆赫。
2.前者输出电平往往比较高,可以达几十伏,后者电平比较低,输出1伏已经是高的了。
3.输出阻抗不同,前者可能是低阻抗的,也有200欧姆、600欧姆的,还有对称输出的,后者阻抗是75或50欧姆,用同轴插头输出;
4.后者信号形式较多,比如可以有AM,FM等调制的信号,也可以加入外调制。而前者则没有。
5.后者还讲究频率稳定性,前者不太讲究。
6.前者品种比较少,后者品种很多,性能差别也大。

3. 低频信号发生器有常规参数吗?

低频信号发生器采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用。

以单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波及其他任意波形。波形的频率和幅度在一定范围内可任意改变。介绍了波形的生成原理、硬件电路和软件部分的设计原理。介绍了单片机控制D/A转换器产生上述信号的硬件电路和软件编程、DAC0832 
D/A转换器的原理和使用方法、AT89C52以及与设计电路有关的各种芯片、关于产生不同低频信号的信号源的设计方案。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点
产品特性

◆ 读数直观,精确,性能稳定,操作方便

◆ 
低频信号发生采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用

◆ 频率输出范围 0Hz ~ 100Hz 正弦波

◆波形失真度 0.5%

◆电压输出范围 0 ~ 50V

◆额定输出功率 50VA

◆电压测量准确度 ±0.5% 满量程

◆频率测量准确度 ±0.05%

◆电源 220V±10%

◆工作环境 环境温度:0°~40°

◆相对湿度:≤80%

低频信号发生器有常规参数吗?

4. 低频信号发生器概述或者简介?

GY2006低频信号发生器是一种高精度正弦波低频电压信号源,其输出电压幅值及频率连续可调。本机采用数字合成技术产生正弦波,数字滤波等先进技术,从而保证波形的失真度、稳定度。可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用。
 
GY2006低频信号发生器一台高精度、高稳定度、高分辨率(LCD频率和电平显示)智能化频率合成信号发生器,同时具有精密函数发生器的主要功能。该仪器是根据当代技术的发展和市场的需要而设计的,频率覆盖0.5Hz到6MHz,可输出正弦波、方波、可调脉冲波、三角波。本仪器采用当代最新的DDS数字频率合成技术,保证输出频率具有晶体的稳定性,输出频率的最小分辨率为0.01Hz,转换速率极快。全部参数预置操作,直接键入所需输出频率和电平,输出电平可用dB、μV、mV、V预置,输出衰减器的分辨率最小为0.1dB,输出阻抗50Ω,输出频率和幅度全部LCD液晶数字显示。设计中采用了高性能的放大器和精密的衰减器,使输出频率响应平稳,脉冲响应频率宽,适用于生产、科研、教学等单位的对电子电路测量、调试的需要。

5. 多功能信号发生器与高频低频信号发生器有什么不同

http://wenku.baidu.com/view/c470fd0302020740be1e9b50.html
正弦信号发生器:正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。  用555制作的多波形信号发生器
低频信号发生器:包括音频(200~20000赫)和视频 (1赫~10兆赫)范围的正弦波发生器。主振级一般用RC式振荡器,也可用差频振荡器。为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。   高频信号发生器:频率为 100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器。一般采用 LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出。主要用途是测量各种接收机的技术指标。输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下。(图1)的输出信号电平能准确读数,所加的调幅度或频偏也能用电表读出。此外,仪器还有防止信号泄漏的良好屏蔽。   标准信号发生器   微波信号发生器:从分米波直到毫米波波段的信号发生器。信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有逐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势。仪器一般靠机械调谐腔体来改变频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上。简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调节到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必须有内部或外加矩形脉冲调幅,以便测试雷达等接收机。   扫频和程控信号发生器:扫频信号发生器能够产生幅度恒定、频率在限定范围内作线性变化的信号。在高频和甚高频段用低频扫描电压或电流控制振荡回路元件(如变容管或磁芯线圈)来实现扫频振荡;在微波段早期采用电压调谐扫频,用改变返波管螺旋线电极的直流电压来改变振荡频率,后来广泛采用磁调谐扫频,以YIG铁氧体小球作微波固体振荡器的调谐回路,用扫描电流控制直流磁场改变小球的谐振频率。扫频信号发生器有自动扫频、手控、程控和远控等工作方式。     标准信号发生器
频率合成式信号发生器:这种发生器的信号不是由振荡器直接产生,而是以高稳定度石英振荡器作为标准频率源,利用频率合成技术形成所需之任意频率的信号,具有与标准频率源相同的频率准确度和稳定度。输出信号频率通常可按十进位数字选择,最高能达11位数字的极高分辨力。频率除用手动选择外还可程控和远控,也可进行步级式扫频,适用于自动测试系统。直接式频率合成器由晶体振荡、加法、乘法、滤波和放大等电路组成,变换频率迅速但电路复杂,最高输出频率只能达1000兆赫左右。用得较多的间接式频率合成器是利用标准频率源通过锁相环控制电调谐振荡器(在环路中同时能实现倍频、分频和混频),使之产生并输出各种所需频率的信号。这种合成器的最高频率可达26.5吉赫。高稳定度和高分辨力的频率合成器,配上多种调制功能(调幅、调频和调相),加上放大、稳幅和衰减等电路,便构成一种新型的高性能、可程控的合成式信号发生器,还可作为锁相式扫频发生器。   函数发生器:又称波形发生器。它能产生某些特定的周期性时间函数波形(主要是正弦波、方波、三角波、锯齿波和脉冲波等)信号。频率范围可从几毫赫甚至几微赫的超低频直到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。图2为产生上述波形的方法之一,将积分电路与某种带有回滞特性的阈值开关电路(如施米特触发器)相连成环路,积分器能将方波积分成三角波。施米特电路又能使三角波上升到某一阈值或下降到另一阈值时发生跃变而形成方波,频率除能随积分器中的RC值的变化而改变外,还能用外加电压控制两个阈值而改变。将三角波另行加到由很多不同偏置二极管组成的整形网络,形成许多不同斜度的折线段,便可形成正弦波。另一种构成方式是用频率合成器产生正弦波,再对它多次放大、削波而形成方波,再将方波积分成三角波和正、负斜率的锯齿波等。对这些函数发生器的频率都可电控、程控、锁定和扫频,仪器除工作于连续波状态外,还能按键控、门控或触发等方式工作。   脉冲信号发生器:产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。脉冲发生器主要由主控振荡器、延时级、脉冲形成级、输出级和衰减器等组成。主控振荡器通常为多谐振荡器之类的电路,除能自激振荡外,主要按触发方式工作。通常在外加触发信号之后首先输出一个前置触发脉冲,以便提前触发示波器等观测仪器,然后再经过一段可调节的延迟时间才输出主信号脉冲,其宽度可以调节。有的能输出成对的主脉冲,有的能分两路分别输出不同延迟的主脉冲。   随机信号发生器:随机信号发生器分为噪声信号发生器和伪随机信号发生器两类。   噪声信号发生器: 完全随机性信号是在工作频带内具有均匀频谱的白噪声。常用的白噪声发生器主要有:工作于1000兆赫以下同轴线系统的饱和二极管式白噪声发生器;用于微波波导系统的气体放电管式白噪声发生器;利用晶体二极管反向电流中噪声的固态噪声源(可工作在18吉赫以下整个频段内)等。噪声发生器输出的强度必须已知,通常用其输出噪声功率超过电阻热噪声的分贝数(称为超噪比)或用其噪声温度来表示。噪声信号发生器主要用途是:①在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统的性能;②外加一个已知噪声信号与系统内部噪声相比较以测定噪声系数;③用随机信号代替正弦或脉冲信号,以测试系统的动态特性。例如,用白噪声作为输入信号而测出网络的输出信号与输入信号的互相关函数,便可得到这一网络的冲激响应函数。   伪随机信号发生器:用白噪声信号进行相关函数测量时,若平均测量时间不够长,则会出现统计性误差,这可用伪随机信号来解决。当二进制编码信号的脉冲宽度墹T足够小,且一个码周期所含墹T数N很大时,则在低于fb=1/墹T的频带内信号频谱的幅度均匀,称为伪随机信号。只要所取的测量时间等于这种编码信号周期的整数倍,便不会引入统计性误差。二进码信号还能提供相关测量中所需的时间延迟。伪随机编码信号发生器由带有反馈环路的n级移位寄存器组成,所产生的码长为 N=2-1 。
编辑本段应用
  信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

多功能信号发生器与高频低频信号发生器有什么不同

6. 请大师说下音频信号发生器~低频信号发生器~函数信号发生器~频率计~脉冲信号发生器有什么区别!

1、音频信号发生器:发出的波形一般为正弦波,频率在音频范围(20-20KHz)左右。你最好就用它。
2、低频信号发生器:频率范围比音频再高一些,一般能达到2MHz,可以输出方波,三角波和正弦波。不过音频特性未必有上面好。
3、函数信号发生器:跟2类似,有部分是重合的。另外还有任意波形发生器,可以产生各种特定波形,波形样式更多。
4、频率计:测频率的仪器。不属于信号发生器范畴。
5、脉冲信号发生器:也就是方波发生器,方波的幅度,频率,占空比都可调。
这些都是模拟电路的仪器,我感觉你最开始上手的时候,先不要买这些东西,弄一只好一点的万用表,然后螺丝刀,烙铁什么的就够了。等到学深入了再买。上面这些东西里面,我感觉只有第一个最符合你的要求,其他都距离很远,不要着急买。

7. 低频信号发生器有哪些参数?

低频信号发生器采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用。
以单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波及其他任意波形。波形的频率和幅度在一定范围内可任意改变。介绍了波形的生成原理、硬件电路和软件部分的设计原理。介绍了单片机控制D/A转换器产生上述信号的硬件电路和软件编程、DAC0832 D/A转换器的原理和使用方法、AT89C52以及与设计电路有关的各种芯片、关于产生不同低频信号的信号源的设计方案。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点
◆ 读数直观,精确,性能稳定,操作方便
◆ 低频信号发生采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用
◆ 频率输出范围 0Hz ~ 100Hz 正弦波
◆波形失真度 0.5%
◆电压输出范围 0 ~ 50V
◆额定输出功率 50VA
◆电压测量准确度 ±0.5% 满量程
◆频率测量准确度 ±0.05%
◆电源 220V±10%
◆工作环境 环境温度:0°~40°
◆相对湿度:≤80%

低频信号发生器有哪些参数?

8. 信号发生器产生频率的方法

信号发生器直接频率制备

利用振荡器直接输入建议的频率信号,晶体振荡器以其Q值低而获得广泛应用,使用恒温晶振和稳补晶振可进一步提升其频率稳定度。主要应用于单点频率信号制备。

2. 信号发生器间接频率制备

利用PLL锁相环展开频率制备,其特点是可输入宽频率范围信号,频率变化STM很小,频率LBP速度较慢。但存有频率变化STM和相噪指标相矛盾的缺点。PLL间接频率制备是频率制备的主要方式。

3.信号发生器直接数字制备(DDS)

利用数字技术展开信号波形制备,其特点是输入频率STM指标极高,频率LBP速度迅速,但输入频率范围较阔。


图7 信号源频率制备技术以及优缺点

直接频率制备技术原理框图如下图右图。使用温补晶振和恒温晶振能提升晶体振荡器的频率稳定度。


图8 直接频率制备原理框图

间接频率制备技术原理框图如下图右图。锁相环由鉴相器;环路滤波器;压控振荡器(VCO);分频器等共同组成。

从频率关系上分析,PLL相等于一种倍频器:PLL输入信号频率变化STM为其鉴相器工作频率。

假如建议频率变化STM越小,鉴相频率适当变大,而要确保输入频率值则N值适当变大。很小的鉴相频率会使PLL环路频宽适当增大,进而使PLL动态性能(频率LBP速度)转好。
最新文章
热门文章
推荐阅读